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a b s t r a c t

Fe- and Cu-doped SmBaCo2O5+ı (FC-SBCO)–Ce0.9Gd0.1O1.95 (CGO) composites with various CGO contents
(0–40 wt.%) are investigated as new cathode materials for intermediate-temperature solid oxide fuel
cells (IT-SOFCs) based on a Ce0.9Gd0.1O1.95 electrolyte. The effect of CGO incorporation on the thermal
expansion coefficient (TEC), electrochemical properties and thermal stability of the FC-SBCO-CGO com-
posites is investigated. A composite cathode of 30 wt.% CGO–70 wt.% FC-SBCO (CS30-70) coated on a
Ce0.9Gd0.1O1.95 electrolyte shows the lowest area specific resistance (ASR), i.e., 0.049 � cm2 at 700 ◦C.
The TEC of the CS30-70 cathode is 14.1 × 10−6 ◦C−1 up to 900 ◦C, which is a lower value than that of
the FC-SBCO (16.6 × 10−6 ◦C−1) counterpart. Long-term thermal stability and thermal cycle tests of the
CS30-70 cathode are performed. Stable ARS values are observed during both type of test. An electrolyte-
supported (300-�m thick) single-cell configuration of CS30-70/CGO/Ni-CGO delivers a maximum power
density of 535 mW cm−2 at 700 ◦C. The unique composite composition of CS30-70 demonstrates improved
electrochemical performance and good thermal stability for IT-SOFCs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Solid oxide fuel cells (SOFCs) are considered promising power
generation devices because of their high working efficiency,
low pollution, and fuel flexibility [1–4]. In the intermediate-
temperature region (600–800 ◦C), the cathode becomes the limiting
factor in determining the overall cell performance because the
polarization resistance increases rapidly as the temperature
decreases [2,5]. Thus, the development of new electrodes with high
electrocatalytic activity for the oxygen-reduction reaction is signifi-
cant for IT-SOFCs. Much effort has been devoted to the development
of mixed ionic and electronic conductors (MIECs), such as Sr- and
Fe-doped BaCoO3 (BSCF) and LaCoO3 (LSCF), that show excellent
catalytic activity.

Recently, several research groups have reported the electro-
chemical properties of a new type of MIEC oxide, cation ordered
LnBaCo2O5+ı (Ln = La, Pr, Sm, Gd, Y), as a potential cathode mate-
rial for IT-SOFCs [2,6–8]. Cobalt in cathodes is beneficial for the
activation of oxygen reduction and thus provides a lower activa-
tion polarization loss [3,4]. Cobalt-based cathodes, however, have
high thermal expansion coefficients (TECS) because of the low-spin
to high-spin transition of Co [4,5,8]. The incompatibility in ther-
mal expansion can cause thermal stress in SOFCs and thus result
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in poor long-term thermal stability [5,9]. Therefore, it is impor-
tant to improve the thermal expansion compatibility between the
cathodes and the electrolytes. More recently, the authors’ group
reported that Co site doped GdBaCo2O5+ı (GBCO) exhibits a lower
TEC and an enhancement of electrochemical performance [8]. Kim
and Manthiram have reported the effect of the Ln ion radius on
the TEC and electrochemical performance [6]. They demonstrated
a decrease in Ln3+ ion radii, leading to a decrease in power density
and TEC. Encouraged by these previous reports, a Fe- and Cu-doped
SmBaCo2O5+ı cathode has been developed because it may provide
a compromise between TEC and power density.

Recently, composite cathodes have been of great interest
because they can expand the electrochemically-active triple-phase
boundaries, enhance electrochemical performance and reduce the
TEC [2,3]. With the aim of improving electrochemical perfor-
mance and reducing the mismatch in TEC between the electrolyte
and cathode materials, an evalutation is made of the electro-
chemical performance and thermal stability of Fe- and Cu-doped
SmBaCo2O5+ı (SBCO) and CGO composite cathodes.

2. Experimental

A double-perovskite oxide of SmBaCo2/3Fe2/3Cu2/3O5+ı (FC-
SBCO) was synthesized via a citrate combustion method, and
composite cathodes were synthesized via a precipitation method.
Detailed synthesis methods of FC-SBCO and composite cathodes for
this have been published elsewhere are available in our previous

0378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpowsour.2010.10.110



Author's personal copy

3096 S.J. Lee et al. / Journal of Power Sources 196 (2011) 3095–3098

Table 1
Chemical compositions and their designations.

Chemical composition Designation

SmBaCo2/3Fe2/3Cu2/3O5+ı FC-SBCO (CSO-100)
Ce0.9Gd0.1O1.95 CGO
10 wt.% CGO and 90 wt.% FC-SBCO CS10-90
20 wt.% CGO and 80 wt.% FC-SBCO CS20-80
30 wt.% CGO and 70 wt.% FC-SBCO CS30-70
40 wt.% CGO and 60 wt.% FC-SBCO CS40-60

works [3,8]. The FC-SBCO and CGO composites had a composition
varying from 0 to 40 wt.%; the designations of these cathodes are
summarized in Table 1.

The phases of the synthesized powders were characterized
with a third-generation synchrotron powder X-ray diffractome-
ter (XRD) from the 8C2 station beam line with Cu K� radiation
(� = 1.549 Å) at the Pohang Light Source (PLS) in Korea. The TEC for
each rectangular-shape pellet sintered at 1000 ◦C for 2 h was mea-
sured using a dilatometer (NETZSCH DIL402C) from 30 to 900 ◦C
at a heating rate of 5 ◦C min−1. The cross-sectional microstructures
of the cells were inspected with a scanning electron microscope
(FE-SEM Philips XL30 FEG).

The symmetrical half-cells were fabricated by screen-printing
[8]. The as-fabricated half-cells were sintered at 950 ◦C for 2 h in air.
Each electrode had a circular shape with a diameter of 0.7 cm, and
its active electrode area was 0.385 cm2 with a thickness of ∼15 �m.
The area specific resistances (ASRs) were measured via 3-probe a.c.
impedance spectroscopy (Solartron 1260 impedance/Gain-phase
analyzer) as a function of temperature (500–800 ◦C) in flowing
air. The sweeping frequency range was 106 to 10−2 Hz with a sig-
nal amplitude of 10 mV. The symmetrical half-cell was thermally
cycled between 200 and 650 ◦C with heating and cooling rates of
5 ◦C per min. Each ASR was measured after equilibrating for 30 min
at a 650 ◦C. Fifty thermal cycles were performed in sequence. In
addition, the long-term thermal stability of the symmetrical half-
cell was determined at 650 ◦C for 500 h.

Electrolyte-supported single-cells with 300 �m of CGO as the
electrolyte, CS0-100 and CS30-70 as the cathode, and NiO-CGO
(in a weight ratio of 65:35) as the anode were fabricated using a
screen-printing method. A source meter (Keithley 2400) was used
to measure the I–V polarization under flowing humidified H2 (∼3%
H2O) as a fuel and in air as an oxidant, respectively, at a rate of
100 sccm.

3. Results and discussion

The synchrotron source XRD patterns of the FC-SBCO and CS30-
70 cathodes calcined at 900 ◦C for 10 h are presented in Fig. 1. The
XRD pattern of FC-SBCO is evidence of a single-phase, high crys-
talline double-perovskite structure without any impurity phase;
the indexed primary peaks of FC-SBCO are summarized in Fig. 1.
Based on previous reports, [6,7] the structure of SmBaCo2O5+ı is
orthorhombic in nature and can be changed by the oxygen content
or the size of the lanthanide [6,10]. In the present study, the Fe- and
Cu-doped SBCO retained the tetragonal symmetry at room temper-
ature, which involves oxygen stoichiometry below ı < 0.45 [8,11].
The unit-cell parameters for FC-SBCO were a = 3.883 Å, b = 3.883 Å
and c = 7.627 Å, and the cell volume was 114.998 Å3. The patterns of
the CS30-70 composite show the presence of indexed peaks corre-
sponding to CGO and FC-SBCO without any other secondary phases.
The synchrotron XRD investigations confirm that FC-SBCO and CGO
have good chemical compatibility.

Fig. 2 shows the thermal expansion curves for composite cath-
odes with different wt.% CS. The table in the inset shows TEC
values calculated from the plots and exhibit the relatively reduced
TEC of FC-SBCO (16.6 × 10−6 ◦C−1) compared with pristine SBCO

Fig. 1. Synchrotron XRD patterns of SmBaCo2/3Fe2/3Cu2/3O5+ı (CS0-100) and CS30-
70 powers calcined at 900 ◦C for 10 h and compared the JCPDS data for CGO and
SmBaCo2O5.54.

(19∼20 × 10−6 ◦C−1) [13,14]. Thus, substitution of Fe and Cu in the
Co sites of SBCO can control the large thermal expansion charac-
teristic of SBCO. The reduced TEC for Fe- and Cu co-doped SBCO
can be explained based on the formation of oxygen vacancies in
cobalt systems as reported for LSCF and GBCO [8,15]. The TEC of
FC-SBCO, however, is still higher than that of the CGO electrolyte,
for example, the TEC of CGO electrolyte is 10.1 × 10−6 ◦C−1 in the
temperature range of 20–800 ◦C in air [16].

As expected, a further decrease in the TEC values is observed on
the addition of CGO into FC-SBCO. The TEC of CS0-100 decreases
to 14.1 × 10−6 ◦C−1 for the CS30-70 cathode. The reduction of the
TEC of composite cathode is attributed mainly to the smaller TEC
of CGO. Thus, the addition of CGO leads to a decrease in the ther-
mal expansion coefficient, which caused the thermal stability of the
CS30-70 cathode, as reported below.

The ASR values of the different wt.% CS composites that are
calculated from the interface resistances of the impedance spec-
tra are shown in Fig. 3. The two insets (a) and (b) in Fig. 3 show
the plot of ASR values vs. different wt.% CS composites and the
impedance spectra for the symmetrical half-cells fabricated with
pristine and different wt.% CS composites, respectively. The resis-

Fig. 2. Thermal-expansion curves (dL/L0) of CS composites in temperature range of
30–900 ◦C in air. Inset table shows TEC values for CS composites.
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Fig. 3. Arrhenius plots of log ASR for symmetrical cells of different wt.% CS/CGO at
interface, measured in air. Inset (a) shows ASR values vs. wt.% CS composites. Inset
(b) shows impedance spectra of different wt.% CS composites at 650 ◦C.

tivity (Rp = R1 + R2) was obtained by fitting the impedance spectrum
with an equivalent circuit model (inset (b) in Fig. 3). The intercepts
of the semicircle on the real axis at high-frequency region represent
the total ohmic resistivity (Rs) of the electrolyte, the current collec-
tors and the lead wires. The resistivity between the two intercepts
of the semicircle at high- and low-frequency regions on the real axis
corresponds to the polarization resistivity (Rp) of the cathodes [2,4].
It is clear that the ASR decreases as the CGO content increases up
to 30 wt.%. The CS30-70 composite cathode on the Ce0.9Gd0.1O1.95

Fig. 4. ASR values of CS30-70 at 650 ◦C for long-term thermal stability and thermal
cycle results under flowing air. Insets (a) and (c) are SEM images of cross-sectional
views of interface between cathode and electrolyte after long-term thermal stability
and cycle tests, respectively. Inset (b) shows the temperature patterns for thermal
cycle test.

Fig. 5. Electrochemical performance of (a) CS0-100/CGO/Ni-CGO and (b) CS30-
70/CGO/Ni-CGO single-cells under humidified H2 fuel and air oxidant at different
temperatures.

(CGO) electrolyte shows an ASR value of 0.049 � cm2 at 700 ◦C
(see Fig. 3), which is lower than the value for the CS0-100 cath-
ode (0.184 � cm2 at 700 ◦C). The inset (a) clearly reveals that the
CS30-70 composite possesses the lowest ASR values at various tem-
peratures. A further increase in CGO content to a value higher than
30 wt.% results in a higher interfacial polarization resistance, which
may be due to a decrease in the electron-conducting path that, in
term, results in a decrease in the electrical conductivity [2].

It is widely accepted that the addition of a highly conduc-
tive phase to the electrode, i.e., composite cathodes, is effective
in expanding the electrochemically reaction zone from the lim-
its of the two-dimensional interface between the electrolyte and
the cathode to the entire area of cathode, and thereby significantly
improves the cathode performance [1–3,12]. As a result, the addi-
tion of the high ionic conductive CGO in CS composite cathodes
may extend the triple-phase boundaries, and results in much lower
overpotentials toward oxygen reduction by providing short-circuit
paths for ion transport. These effects reflect a decrease in cathode
polarization due to a reduction in charge-transfer resistance [2,3].

To evaluate the thermal stability of the CS30-70 cathode, the
ASRs of the half-cell as a function of thermal cycling and long-term
thermal stability were surveyed by a.c. impedance spectroscopy;
the results are shown in Fig. 4. The half-cell was thermally cycled
50 times between 200 and 650 ◦C with heating and cooling rates
of 5 ◦C per min, as shown in inset (b) of Fig. 4. The results demon-
strate small or negligible changes in polarization resistance after
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50 thermal cycles. The CS30-70 cathode also displays stable per-
formance for 500 h at 650 ◦C in light of changes in the ASR value.
Insets (a) and (c) are cross-sectional views of the interface between
the CS30-70 cathode and the CGO electrolyte after the cell tests.
The SEM micrographs reveal high porosity and good connectivity
without cracking or delamination, which lead to the stable polar-
ization resistance during the cell test. The reduced TECs may be one
of the reasons behind the stable bonding between the cathode and
electrolyte after cycling and long-term thermal stability testing.

The electrochemical performances of the electrolyte-supported
single-cell configuration of CS/CGO/Ni-CGO are shown in Fig. 5 for
the temperature range of 550–700 ◦C using humidified H2 (∼3%
H2O) as a fuel and air as an oxidant. The maximum power density of
CS0-100 was 405 mW cm−2, and that of CS30-70 was 535 mW cm−2

at 700 ◦C. These results demonstrate that the CS30-70 cath-
ode exhibits high performance in the intermediate-temperature
regime, which is compatible with reported data for double-
perovskite cathode materials [6,7,17]. Thus, it can be concluded that
the enhanced electrochemical performance and structural stability
of the CS30-70 cathode is due to the addition of the CGO to the FC-
SBCO, which yielded a large triple-phase boundary and provides
short routes for ion transport for mixed conducting materials, that
are advantageous for efficient oxygen reduction processes and fast
charge transport [2,3]. The addition of CGO also affects good inter-
connectivity between the composite particles and the interface of
the cathode and electrolyte due to a reduced TEC. In addition, the
performance of the cell may be improved significantly by introduc-
ing an anode-supported structure to minimize ohmic polarization,
which is mainly attributed to the electrolyte.

4. Conclusions

The different weight percentages of CS0-100 to CS40-60 com-
posite cathodes have been synthesized via a citrate combustion
method followed by a precipitation method. The TEC values
are reduced by mixing CGO and FC-SBCO particles to form CS
composite cathodes, which significantly improves the thermal sta-
bility of the CS30-70 cathode by achieving a match of the TEC

between the electrolyte and cathode. Among the CS composite
cathodes, the CS30-70 cathode gives the highest performance. The
maximum power density of the electrolyte-supported single-cell
CS30-70/CGO/Ni-CGO is 332 and 535 mW cm−2 at 650 and 700 ◦C,
respectively. These results suggest that CS30-70 is a promising
cathode material for use in IT-SOFCS.
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